Reconstructing perceived visual stimuli from brain fMRI signals using diffusion models

Gabor Ioana Babeş-Bolyai University

WeADL 2025 Workshop

The workshop is organized under the umbrella of WinDMiL, project funded by CCCDI-UEFISCDI, project number PN-IV-P7-7.1-PED-2024-0121, within PNCDI IV

Outline

- Task definition
- Classifications
- NSD Dataset
- Related work
- Research questions
- Our approach
- Methodology
- Results & Comparisons
- Future directions
- Conclusion

Task Definition

- Visual: Viewed images
- Brain: Neural signals (e.g fMRI, MEG, EEG)
- **Decoding**: Classify/Retrieve/Reconstruct the visual stimulus

General intuition

- Extract features from the image
- Map the brain information to the features
- Predict the features
- **Reconstruct** the image based on the predicted features

Classifications

- Brain imaging
 - fMRI: High spatial resolution, slow temporal resolution
 - **EEG/MEG**: High temporal, low spatial resolution
 - fMRI preferred for decoding due to spatial specificity
- Image generation
 - Generative Adversarial Networks (Mindreader, NeurIPS 2022[4])
 - Latent Diffusion Models
 - Stable Diffusion
 - Versatile Diffusion

Classifications

- Number of subjects
 - Single subject
 - Multiple subjects
 - *Cross-Subject transfer of single subject models
- Brain mapping pipeline
 - Based on number of stages
 - Single-stage
 - Multi-stage
 - Commonly used models
 - Ridge regression
 - Multi Layer Perceptrons
 - Transformers

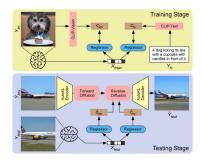
Dataset: Natural Scenes Dataset (NSD), 2022 [1]

- Large-scale, high-resolution 7-Tesla fMRI dataset
- 8859 training, 982 test
- Microsoft Common Objects in Context [5]images
- 8 subjects, only 4 commonly studied
- Preprocessing: GLMDenoise[3], nsdgeneral ROI, flattened array of voxels

Subject ID	Voxel Vector Length
01	15724
02	14278
05	13039
07	12682

Table: 1D voxel vector lengths for each subject

Related work



BrainDiffuser diagram

- BrainDiffuser, 2023,
 Nature[6]: Two-stage ridge regression, first VDVAE stage,
 finalized with Versatile Diffusion
- BrainGuard, 2025, AAAI[7]: Federated learning approach, emphasizes privacy and collaborative learning
- MindFormer, 2024[2]: IP Adapter & ViT-inspired architecture
- Trade-off: Model complexity vs decoding performance

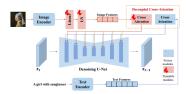
Research questions

- How can we improve the scalability and computational efficiency of the approach?
- Do current methods extract redundant or non-informative feature embeddings?

Our approach

- In the literature, CLIP embeddings are commonly used, typically 257 visual patched embeddings and 77 textual embeddings. We investigate the performance when decoding with only 16 target embeddings, obtained from a pretrained IPAdapterPlus[8] model. This approach has been first used by Mindformer [2], but has not yet been explored for other model architectures.
- We perform experiments both on single-subject ridge regression models and on a multi-subject federated learning framework (adapted from BrainGuard).

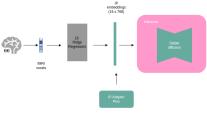
Methodology: IP Adapter



IP Adapter architectural diagram [8]

- Enables image-based prompting for text-to-image diffusion models
- The authors released multiple variations: IPAdapter, IPAdapterPlus, IPAdapterFull, IPAdapterPlusXL
- Our experiments use IPAdapterPlus, which offers 16x768 positive embeddings, having a good tradeoff between quality and size

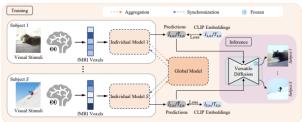
Methodology: Ridge regression framework architecture



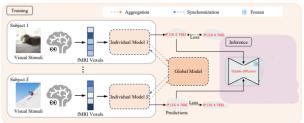
Simple Ridge Regression Framework

- One stage pipeline
- 16 Ridge Regressors

Methodology: BrainGuard-inspired framework architecture



Original Brainguard Diagram [7]



Adapted Brainguard Diagram

Methodology: BrainGuard-inspired framework architecture

Synchronization strategy, as described in the original paper

- Retention for foundational layers
- Global alignment for intermediate layers
- Adaptive tuning for advanced layers
 - Dynamic Fusion Learner [9] Module
 - used on the advanced m layers of the module
 - trained dynamically, based on the similarity between the weights of the advanced layers of the local and the global models

Methodology: BrainGuard-inspired framework architecture

Network architecture, for both clients and global:

- **Input:** High-dimensional vector $x \in \mathbb{R}^{\text{in_dim}}$
- MLP Stack: *n* residual blocks of

$$\mathtt{Linear} \to \mathtt{GELU} \to \mathtt{Norm} \to \mathtt{Dropout}$$

- Flatten: Reshape to [B, h]
- **Head:** Linear($h \rightarrow latent_size$) \Rightarrow image embedding
- Projector: Deep nonlinear MLP:

ullet Output: Projected embedding $\in \mathbb{R}^{\mathsf{latent_size}}$

Results - ridge regression

Subject	PixCorr†	SSIM↑	Alex (2)↑	Alex (5)↑	Incept.↑	CLIP↑	EffNet-B↓	SwAV↓
subj1	0.244	0.303	93.3%	97.9%	92.9%	91.7%	0.733	0.396
subj2	0.242	0.331	90.5%	96.4%	90.0%	86.1%	0.770	0.427
subj5	0.221	0.328	89.7%	96.4%	91.2%	87.9%	0.757	0.421
subj7	0.218	0.327	87.9%	94.5%	88.9%	85.5%	0.789	0.444
average	0.231	0.322	90.35%	96.3%	90.75%	87.8%	0.744	0.422

Table: Quantitative results for individual subjects using the 8 evaluation metrics.

Results - BrainGuard adaptation

No. local iterations	PixCorr†	SSIM↑	Alex (2)↑	Alex (5)↑	Incept.↑	CLIP↑	EffNet-B↓	SwAV↓
1	0.263	0.335	0.951	0.985	0.959	0.939	0.611	0.334
5	0.256	0.330	0.949	0.983	0.957	0.937	0.614	0.336
10	0.254	0.335	0.948	0.982	0.955	0.939	0.618	0.335
20	0.252	0.331	0.946	0.983	0.956	0.937	0.618	0.339

Table: Quantitative results based on the frequency of synchronization

Results - BrainGuard adaptation

Number of layers	PixCorr†	SSIM↑	Alex (2)↑	Alex (5)↑	Incept.↑	CLIP↑	EffNet-B↓	SwAV↓
1	0.251	0.330	0.947	0.982	0.954	0.942	0.616	0.339
2	0.262	0.332	0.949	0.983	0.952	0.939	0.622	0.341
3	0.247	0.328	0.943	0.982	0.954	0.942	0.612	0.337
4	0.248	0.330	0.945	0.983	0.958	0.951	0.608	0.335
5	0.249	0.331	0.948	0.982	0.957	0.942	0.613	0.338

Table: Quantitative results based on the number of layers synchronized

Results - BrainGuard adaptation

Size of hidden layer	PixCorr†	SSIM↑	Alex (2)↑	Alex (5)↑	Incept.↑	CLIP↑	EffNet-B↓	SwAV↓
64	0.091	0.248	0.759	0.854	0.798	0.802	0.837	0.489
128	0.134	0.293	0.839	0.927	0.883	0.884	0.741	0.426
256	0.188	0.320	0.891	0.956	0.918	0.918	0.683	0.389
2048	0.263	0.334	0.951	0.985	0.959	0.937	0.611	0.334

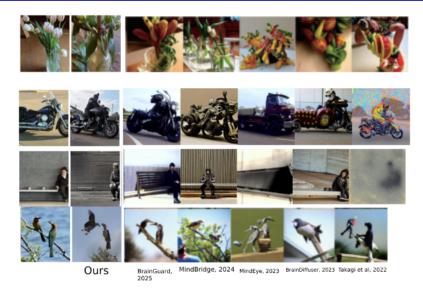
Table: Quantitative results based on the hidden layer size

Results - Comparison

Methods	PixCorr†	SSIM↑	Alex (2)↑	Alex (5)↑	Incept.↑	CLIP↑	EffNet-B↓	SwAV↓
Mind-Reader, NeurIPS 2022					78.2%			
Mind-Vis, CVPR 2023	0.080	0.220	72.1%	83.2%	78.8%	76.2%	0.854	0.491
Takagi et al. CVPR 2023			83.0%	83.0%	76.0%	77.0%		
Gu et al., MIDL 2023	0.150	0.325					0.862	0.465
Brain-Diffuser, Nature 2023	0.254	0.356	94.2%	96.2%	87.2%	91.5%	0.775	0.423
MindEye, NeurIPS 2023	0.309	0.323	94.7%	97.8%	93.8%	94.1%	0.645	0.367
MindBridge, CVPR 2024	0.148	0.259	86.9%	95.3%	92.2%	94.3%	0.713	0.413
MindFormer, arxiv 2024	0.243	0.345	93.5%	97.6%	94.4%	94.4%	0.648	0.350
MindEye2, ICML 2024	0.322	0.431	96.1%	98.6%	95.4%	93.0%	0.619	0.333
Psychometry, CVPR 2024	0.295	0.328	94.5%	96.8%	94.9%	95.3%	0.632	0.361
BRAINGUARD, AAAI 2025	0.313	0.330	94.7%	97.8%	96.1%	96.4%	0.624	0.353
ours (RR), 2025	0.231	0.322	90.35%	96.3%	90.75%	87.8%	0.744	0.422
ours (BG), 2025	0.241	0.326	93.92%	97.72%	95.10%	93.98%	0.619	0.343

Table: Quantitative comparison results on NSD test dataset between multiple models

Qualitative evaluation - Comparison



Comparison with other works

Qualitative evaluation - Good pictures

- Accurate reconstruction of colors
- Semantic meaning conserved

Good Pictures

Qualitative evaluation - Bad pictures

- Unrelated shapes : e.g. dog faces
- Irregularities regarding pictures with multiple small elements: e.g. donuts

Bad Pictures

Future Directions

- Generalization across subjects & improved scalability
- Video decoding from brain signals
- Decoding imagined scenes

Conclusion

- Presented efficient brain-to-image pipelines
- Incorporated IP Adapter into both:
 - a single subject framework
 - a cross subject federated learning framework
- Obtained competitive results with decreased model size

References I

Emily J Allen, Ghislain St-Yves, Yihan Wu, Jesse L Breedlove, Jacob S Prince, Logan T Dowdle, Matthias Nau, Brad Caron, Franco Pestilli, Ian Charest, et al.

A massive 7t fmri dataset to bridge cognitive neuroscience and artificial intelligence.

Nature neuroscience, 25(1):116-126, 2022.

Inhwa Han, Jaayeon Lee, and Jong Chul Ye.

Mindformer: Semantic alignment of multi-subject fmri for brain decoding. arXiv preprint arXiv:2405.17720, 2024.

Kendrick N Kay, Ariel Rokem, Jonathan Winawer, Robert F Dougherty, and Brian A Wandell.

Glmdenoise: a fast, automated technique for denoising task-based fmri data.

Frontiers in neuroscience, 7:247, 2013.

References II

Sikun Lin, Thomas Sprague, and Ambuj K Singh.

Mind reader: Reconstructing complex images from brain activities.

Advances in Neural Information Processing Systems, 35:29624–29636, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick.

Microsoft coco: Common objects in context.

In Computer vision–ECCV 2014: 13th European conference, Zurich, Switzerland, September 6-12, 2014, proceedings, part v 13, pages 740–755. Springer, 2014.

Furkan Ozcelik and Rufin VanRullen.

Natural scene reconstruction from fmri signals using generative latent diffusion.

Scientific Reports, 13(1):15666, 2023.

References III

Zhibo Tian, Ruijie Quan, Fan Ma, Kun Zhan, and Yi Yang.

Brainguard: Privacy-preserving multisubject image reconstructions from brain activities.

In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 14414–14422, 2025.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang.

lp-adapter: Text compatible image prompt adapter for text-to-image diffusion models.

arXiv preprint arXiv:2308.06721, 2023.

Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing Guan.

Fedala: Adaptive local aggregation for personalized federated learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pages 11237–11244, 2023.